Page 205 - python
P. 205

179




                                                        บรรณานุกรม


                   Garreta, R., & Moncecchi, G. (2013). Learning Scikit-learn : Machine Learning in Python:
                          Experience the Benefits of Machine Learning Techniques by Applying Them to

                          Real-world Problems Using Python and the Open Source Scikit-learn Library.
                          Birmingham, UK: Packt Publishing.
                   GNU Free Documentation License. (2020, October 3). Retrieved from http://rigaux.org/

                          language-study/diagram.html
                   Gollapudi, S. (2019). Learn Computer Vision Using OpenCV: With Deep Learning CNNs
                          and RNNs. Berkeley, CA: Apress.
                   Harrington, P. (2012). Machine Learning in Action. Manning. Shelter Island, N.Y.: Manning.

                   Howard, J. & Gugger, S. (2020). Deep Learning for Coders with Fastai and PyTorch.
                          Sebastopol, CA: O’Reilly Media.
                   Johansson, R. (2019). Numerical Python: Scientific Computing and Data Science
                          Applications with Numpy, SciPy and Matplotlib. 2nd ed. Berkeley, CA: Apress.

                   Ketkar, N.& Moolayil, J. (2021). Deep Learning with Python : Learn Best Practices of Deep
                          Learning Models with PyTorch. 2nd ed. Berkeley, CA: Apress.
                   Kopec, D. (2019). Classic Computer Science Problems in Python. [N.p.]: Manning.
                   Korites, B. J. (2018). Python Graphics: A Reference for Creating 2D and 3D Images.

                          Berkeley, CA: Apress
                   Korstanje, J. (2021). Advanced Forecasting with Python: With State-of-the-Art-Models
                          Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR. [S.l.] : Apress.

                   Krogh, J. W. (2018). MySQL Connector/Python Revealed: SQL and NoSQL Data Storage
                          Using MySQL for Python Programmers. Berkeley, CA: Apress.
                   Kruk, S. (2018). Practical Python AI Projects: Mathematical Models of Optimization
                          Problems with Google OR-Tools. Berkeley, CA: Apress.

                   Lancaster, A., and Webster, G. (2019). Python for the Life Sciences: A Gentle Introduction
                          to Python for Life Scientists. [New York]: Apress.
                   Li, R. (2020). Essential Statistics for Non-STEM Data Analysts Get to Grips with the
                          Statistics and Math Knowledge Needed to Enter the World of Data Science with

                          Python. [N.p.]: Packt Publishing.
                   Lukaszewski, A. (2010). MySQL for Python: Integrate the Flexibility of Python and the
                          Power  of MySQL to Boost the Productivity of Your Applications. Birmingham:
                          Packt Publishing.

                   Mathur, P. (2019). Machine Learning Applications Using Python: Cases Studies from
                          Healthcare, Retail, and Finance. Berkeley, CA: Apress.
                   McKinney, Wes. (2013). Python for Data Analysis. Sebastopol, CA: O'Reilly Media.
   200   201   202   203   204   205   206